Learn practical skills, build real-world projects, and advance your career
alt

Objective

The challenge is to create a model that uses data from the first 24 hours of intensive care to predict patient survival. MIT's GOSSIS community initiative, with privacy certification from the Harvard Privacy Lab, has provided a dataset of more than 130,000 hospital Intensive Care Unit (ICU) visits from patients, spanning a one-year timeframe. This data is part of a growing global effort and consortium spanning Argentina, Australia, New Zealand, Sri Lanka, Brazil, and more than 200 hospitals in the United States.

Data Description

MIT's GOSSIS community initiative, with privacy certification from the Harvard Privacy Lab, has provided a dataset of more than 130,000 hospital Intensive Care Unit (ICU) visits from patients, spanning a one-year timeframe. This data is part of a growing global effort and consortium spanning Argentina, Australia, New Zealand, Sri Lanka, Brazil, and more than 200 hospitals in the United States.

The data includes:

Training data for 91,713 encounters.
Unlabeled test data for 39,308 encounters, which includes all the information in the training data except for the values for hospital_death.
WiDS Datathon 2020 Dictionary with supplemental information about the data, including the category (e.g., identifier, demographic, vitals), unit of measure, data type (e.g., numeric, binary), description, and examples.
Sample submission files

H2O :

H2O is ‘the open source in-memory, prediction engine for Big Data science’. H2O is a feature-rich, open source machine learning platform known for its R and Spark integration and its ease of use. It is a Java virtual machine that is optimised for doing in-memory processing of distributed, parallel machine learning algorithms on clusters.

The motive of H2O is to provide a platform which made easy for the non-experts to do experiments with machine learning.H2O architecture can be divided into different layers in which the top layer will be different APIs, and the bottom layer will be H2O JVM.

alt

Pic Credit : Datacamp.com

H2O AutoML

**H2O’s AutoML can also be a helpful tool for the advanced user, by providing a simple wrapper function that performs a large number of modeling-related tasks that would typically require many lines of code, and by freeing up their time to focus on other aspects of the data science pipeline tasks such as data-preprocessing, feature engineering and model deployment.
**

H2O’s AutoML can be used for automating the machine learning workflow, which includes automatic training and tuning of many models within a user-specified time-limit. Stacked Ensembles – one based on all previously trained models, another one on the best model of each family – will be automatically trained on collections of individual models to produce highly predictive ensemble models which, in most cases, will be the top performing models in the AutoML Leaderboard.

AutoML Interface

The H2O AutoML interface is designed to have as few parameters as possible so that all the user needs to do is point to their dataset, identify the response column and optionally specify a time constraint or limit on the number of total models trained.