PS - You need to have the CSV file uploaded in the jupyter notebook. Here is the link to the dataset - https://www.kaggle.com/greeshmagirish/crime-against-women-20012014-india
import jovian
jovian.commit(project='crime-against-women', environment=None)
[jovian] Attempting to save notebook..
!pip install pandas
!pip install matplotlib
!pip install seaborn
!pip install plotly
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
%matplotlib inline
jovian.commit('crimes_against_women.csv')
crimes_df = pd.read_csv('crimes_against_women.csv')
crimes_df.shape
import jovian
jovian.commit()
overall_crime = crimes_df.isna().sum()
overall_crime
districts = len(crimes_df.DISTRICT.unique())
districts
crimes_df.drop(['DISTRICT', 'Unnamed: 0'], axis = 1, inplace=True)
crimes_df
print(crimes_df['STATE/UT'].unique())
# Fist we will remove all the repeated uppercase values
def remove_uppercase(r):
r = r['STATE/UT'].strip()
r = r.upper()
return r
crimes_df['STATE/UT'] = crimes_df.apply(remove_uppercase, axis=1)
#Now use replace function to replace the other type of repeated datas as dicussed above
crimes_df['STATE/UT'].replace("A&N ISLANDS", "A & N ISLANDS", inplace = True)
crimes_df['STATE/UT'].replace("D&N HAVELI", "D & N HAVELI", inplace = True)
crimes_df['STATE/UT'].replace("DELHI UT", "DELHI", inplace = True)
crimes_df['STATE/UT'].unique()
len(crimes_df['STATE/UT'].unique())
import jovian
jovian.commit()
victims_raped = crimes_df.Rape.sum()
victims_kidnapped_abducted = crimes_df.Kidnapping_Abduction.sum()
dowery_death = crimes_df.Dowry_Deaths.sum()
modesty_assault = crimes_df.Assault_for_her_modesty.sum()
insult_to_modesty = crimes_df.Insult_to_modesty_of_Women.sum()
domestic_violence = crimes_df.Domestic_violence.sum()
girls_imported = crimes_df.Importation_of_Girls.sum()
total_population_of_victim_overall = victims_raped + victims_raped + dowery_death +modesty_assault+ insult_to_modesty + domestic_violence+ girls_imported
total_population_of_victim_overall
fig, axes = plt.subplots(2, 3, figsize=(25, 12))
axes[0,0].set_title("Chart of rape cases in India in 2001-2014")
axes[0,0].bar(crimes_df.Year, crimes_df.Rape, color = 'black');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases of Rape in India') #Y-axis
axes[0,1].set_title("Chart of Kidnapping and Abduction cases in India in 2001-2014")
axes[0,1].bar(crimes_df.Year, crimes_df.Kidnapping_Abduction, color = 'violet');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases of Kidnappinga and Abduction in India') #Y-axis
axes[0,2].set_title("Chart of Dowry death cases in India in 2001-2014")
axes[0,2].bar(crimes_df.Year, crimes_df.Dowry_Deaths, color = 'navy');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases of Dowry deaths in India') #Y-axis
axes[1,0].set_title("Chart of Assault to her modesty in 2001-2014")
axes[1,0].bar(crimes_df.Year, crimes_df.Assault_for_her_modesty, color = 'cyan');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases of Assaulting a women for her modesty in India') #Y-axis
axes[1,1].set_title("Chart of Domestic Violence cases in India in 2001-2014")
axes[1,1].bar(crimes_df.Year, crimes_df.Domestic_violence, color = 'orange');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases of Domestic Violance in India') #Y-axis
axes[1,2].set_title("Chart of Importation of girls in India in 2001-2014")
axes[1,2].bar(crimes_df.Year, crimes_df.Domestic_violence, color = 'red');
plt.xlabel('Year') #X-axis
plt.ylabel('Cases ofImportation of girls in India') #Y-axis
count_df = crimes_df.groupby('Year')[['STATE/UT']].count()
count_df
import jovian
jovian.commit()
crimes_df.drop(['Assault_for_her_modesty', 'Insult_to_modesty_of_Women'], axis = 1, inplace=True)
max_rape_cases = crimes_df.sort_values('Rape', ascending = False).head(10)
max_rape_cases
max_dowry_death_cases = crimes_df.sort_values('Dowry_Deaths', ascending = False).head(10)
max_dowry_death_cases
max_domestic_violance_cases = crimes_df.sort_values('Domestic_violence', ascending = False).head(10)
max_domestic_violance_cases
max_importation_case = crimes_df.sort_values('Importation_of_Girls', ascending = False).head(10)
max_importation_case
counts_df = crimes_df.groupby('STATE/UT')[['Rape', 'Kidnapping_Abduction', 'Dowry_Deaths','Domestic_violence', 'Importation_of_Girls']].sum()
counts_df
counts_df.sort_values(by = 'Rape', ascending = False).head(5)
counts_df.sort_values(by = 'Kidnapping_Abduction', ascending = False).head(5)
counts_df.sort_values(by = 'Dowry_Deaths', ascending = False).head(5)
counts_df.sort_values(by = 'Domestic_violence', ascending = False).head(5)
counts_df.sort_values(by = 'Importation_of_Girls', ascending = False).head(5)
highest_cases_df = highest_cases_df.merge(max_importation_case ,max_domestic_violance_cases,max_domestic_violance_cases,max_rape_cases)
import jovian
jovian.commit()
At first, we inferred that more than 5 million females has been a victim of some or other type of Violance, based on their gender, starting from rape to importing them for buisness. We also saw
import jovian
jovian.commit()
[jovian] Attempting to save notebook..
import jovian
jovian.commit()