Learn practical skills, build real-world projects, and advance your career
from __future__ import print_function
import torch
import torchvision
import torchvision.transforms as transforms

import torch.nn as nn
import torch.nn.functional as F

import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
cuda:0
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))
Extracting ./data/cifar-10-python.tar.gz to ./data Files already downloaded and verified


# 이미지를 보여주기 위한 함수

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# 학습용 이미지를 무작위로 가져오기
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 이미지 보여주기
imshow(torchvision.utils.make_grid(images))
# 정답(label) 출력
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
Notebook Image
truck cat frog deer
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()
net.cuda()
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001, )

for epoch in range(2):   # 데이터셋을 수차례 반복합니다.

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # [inputs, labels]의 목록인 data로부터 입력을 받은 후;
        inputs, labels = data
        inputs, labels = inputs.cuda(), labels.cuda()

        # 변화도(Gradient) 매개변수를 0으로 만들고
        optimizer.zero_grad()

        # 순전파 + 역전파 + 최적화를 한 후
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 통계를 출력합니다.
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')
[1, 2000] loss: 1.907 [1, 4000] loss: 1.638 [1, 6000] loss: 1.527 [1, 8000] loss: 1.485 [1, 10000] loss: 1.420 [1, 12000] loss: 1.398 [2, 2000] loss: 1.312 [2, 4000] loss: 1.311 [2, 6000] loss: 1.279 [2, 8000] loss: 1.272 [2, 10000] loss: 1.251 [2, 12000] loss: 1.246 Finished Training