Learn practical skills, build real-world projects, and advance your career

Analysis of volcanic eruptions

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

Earth's volcanoes occur because its crust is broken into 17 major, rigid tectonic plates that float on a hotter, softer layer in its mantle. Therefore, on Earth, volcanoes are generally found where tectonic plates are diverging or converging, and most are found underwater.

Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. One such hazard is that volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature; the melted particles then adhere to the turbine blades and alter their shape, disrupting the operation of the turbine. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere (or troposphere); however, they also absorb heat radiated from the Earth, thereby warming the upper atmosphere (or stratosphere). Historically, volcanic winters have caused catastrophic famines.

The idea of this work is to use the libraries explained in the course Data Analysis with Python: Zero to Pandas to study the dataset Volcano eruptions of Kaggle.

How to run the code

This is an executable Jupyter notebook hosted on Jovian.ml, a platform for sharing data science projects. You can run and experiment with the code in a couple of ways: using free online resources (recommended) or on your own computer.

Option 1: Running using free online resources (1-click, recommended)

The easiest way to start executing this notebook is to click the "Run" button at the top of this page, and select "Run on Binder". This will run the notebook on mybinder.org, a free online service for running Jupyter notebooks. You can also select "Run on Colab" or "Run on Kaggle".

Option 2: Running on your computer locally
  1. Install Conda by following these instructions. Add Conda binaries to your system PATH, so you can use the conda command on your terminal.

  2. Create a Conda environment and install the required libraries by running these commands on the terminal:

conda create -n zerotopandas -y python=3.8 
conda activate zerotopandas
pip install jovian jupyter numpy pandas matplotlib seaborn opendatasets --upgrade
  1. Press the "Clone" button above to copy the command for downloading the notebook, and run it on the terminal. This will create a new directory and download the notebook. The command will look something like this:
jovian clone notebook-owner/notebook-id
  1. Enter the newly created directory using cd directory-name and start the Jupyter notebook.
jupyter notebook

You can now access Jupyter's web interface by clicking the link that shows up on the terminal or by visiting http://localhost:8888 on your browser. Click on the notebook file (it has a .ipynb extension) to open it.

Downloading the Dataset

The data comes from The Smithsonian Institution.

Axios put together a lovely plot of volcano eruptions since Krakatoa (after 1883) by elevation and type. The dataset consists of the following tables: eruptions.csv, events.csv, sulfur.csv, tree_rings.csv and volcano.csv.

!pip install jovian opendatasets --upgrade --quiet

Let's begin by downloading the data, and listing the files within the dataset.