import csv
import random
import math
def loadCsv(filename):
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def split(dataset, ratio):
trainSize = int(len(dataset)*ratio)
trainSet = []
copy = list(dataset)
while len(trainSet)<trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return trainSet, copy
def separate(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if vector[-1] not in separated:
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stddev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg, 2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stddev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summByClass(dataset):
separated = separate(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
def calcProb(x, mean, stddev):
exponent = math.exp(-(math.pow(x-mean, 2)/(2*math.pow(stddev, 2))))
return (1/math.sqrt(2*math.pi)*stddev)*exponent
def calcClassProb(summaries, inputV):
probs = {}
for classValue, classSumm in summaries.items():
probs[classValue] = 1
for i in range(len(classSumm)):
mean, stddev = classSumm[i]
x = inputV[i]
probs[classValue] *= calcProb(x, mean, stddev)
return probs
def predict(summaries, inputV):
probs = calcClassProb(summaries, inputV)
bestLabel, bestPeob = None, -1
for classValue, probability in probs.items():
if bestLabel is None or probability>bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPreds(summaries, testSet):
preds = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
preds.append(result)
return preds
def getAccuracy(testSet, preds):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == preds[i]:
correct += 1
return (correct/float(len(testSet)))*100.0
def main():
ratio = 0.67
filename = "datasets/5.csv"
dataset = loadCsv(filename)
trainingSet, testSet = split(dataset, ratio)
print('Train Size', len(trainingSet), 'Test Size', len(testSet))
summaries = summByClass(trainingSet)
preds = getPreds(summaries, testSet)
acc = getAccuracy(testSet, preds)
print('Accuracy: ',acc)
main()
Train Size 514 Test Size 254
Accuracy: 52.75590551181102